what 2 numbers have a sum of 25 and a product of 136?


Sagot :

Let 'x' be the first number 
      'y' be the other number
-----------------------------------
-Their sum is 25
x + y = 25    -----equation 1
----------------------------------
-Their product is 136
x(y) = 136   ----equation 2
---------------------------------
From equation 1:
x + y = 25
x = 25 - y -----equation 1'
---------------------------------
Substitute equation 1' to equation 2
x(y) = 136
(25-y)y = 136
--------------------------------
Distribute y to the quantity (25-y)
25y - y² = 136
--------------------------------
Transpose 25y - y² to the right side of the equation
y² - 25y + 136 = 0
(y-17)(y-8) = 0
y=17; y=8
------------------------------
If y=17
Using equation 1'
x = 25 - y
x = 25 - 17
x = 8
-----------------------------
If y=8
Using equation 1'
x = 25 - y
x = 25 - 8
x = 17
-----------------------------
Therefore the two numbers are 8 and 17.

OR 
You can have it this way: =)
FACTORS of 136
136 = 1 x 136
136 = 2 x 68
136 = 4 x 34
136 = 8 x 17
------------------------------------
From the factors, choose the ones when added will have a sum of 25
In which case is the pair 8 and 17.
the two numbers are 17 and 8