Step 1: List the given values.
[tex]\begin{aligned} V_1 & = \text{100 L} \\ n_1 & = \text{3.25 mol} \\ n_2 & = \text{14.15 mol} \end{aligned}[/tex]
Step 2: Calculate the final volume of the gas by using Avogadro's law.
[tex]\begin{aligned} \frac{V_1}{n_1} & = \frac{V_2}{n_2} \\ n_1V_2 & = V_1n_2 \\ \frac{n_1V_2}{n_1} & = \frac{V_1n_2}{n_1} \\ V_2 & = \frac{V_1n_2}{n_1} \\ & = \frac{(\text{100 L})(\text{14.15 mol})}{\text{3.25 mol}} \\ & = \text{435.3846 L} \\ & \approx \boxed{\text{440 L}} \end{aligned}[/tex]
Hence, 14.15 mol of Ar occupies a volume of 440 L under the same condition.
[tex]\\[/tex]
#CarryOnLearning