As shown in the figure point c represents the location of the satellite.
[tex]\tt a. \: \frac{b}{c} = \frac{ \sin(B) }{ \sin(C) } \\ \\ \tt C = 180° - 75° - 86° = 19° \\ \tt b = \purple{137.88 \: \: miles} \\ \\ \tt \frac{a}{c } = \frac{ \sin(A) }{ \sin(C) } ⇒ a = \purple{133.51 \: \: miles}[/tex]
Therefore, 137.88 miles from the first tower, 133.51 miles from the second tower.
[tex] \\ [/tex]
[tex] \tt b. \: A = \frac{1}{2} ab \sin(c) = \frac{1}{2} \times 133.51 \times 137.88 \\ \tt \times \sin(19°) = 2996.66 [/tex]
(Draw the dotted line CD [tex]\perp[/tex] AB)
[tex]\tt A = \frac{1}{2} \times AB \times CD = 2996.66 \\ \\ \tt CD = \purple{133.18 \: \: miles}[/tex]
Therefore, altitude of the satellite is 133.18 miles