Sagot :
Answer:
x=180
180-150=30
y=60
X=120
120-60=60
60-30=30
Step-by-step explanation:
Euclid Street branches out into Pythagoras Street and Hipparchus Street such that Pythagoras Street is perpendicular to Hipparchus Street. On the right side, Pythagoras Street makes an angle of 150° with Euclid Street. Solve for the values of x, y,and z a shown in the figure.
¦¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¦
Euclid Street is a straight angle so it's 180°.
- [tex] \large \bold{Solve \: \: for \: \: x. } \: \boxed{ \begin{array}{} \tt x = 180\degree - 150 \degree \\ \tt \green {x = 30 \degree} \end{array}}[/tex]
- [tex] \bold{Solve \: \: for \: \: y. } \: \boxed{ \begin{array}{} \tt y = 150 \degree - 30 \degree \\ \green{ \tt x = 60 \degree} \end{array}}[/tex]
- [tex] \large \bold{Solve \: \: for \: \: z. } \: \boxed{ \begin{array}{} \tt z = 180 \degree - 60 \degree \\ \green{ \tt z = 120 \degree}\end{array}}[/tex]
¦¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¦