how many terms of the arithmetic sequence {1,3,5,7,...} will give a sum of 961

Sagot :

When we add odd numbers:
1 = 1 
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²

* This is because an odd number is expressed as  2n-1
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²

So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31

There are 31 terms in the arithmetic sequence