Answer:
1.900292375
Step-by-step explanation:
First, find the mean.
12 + 11 + 14 + 10 + 8 + 13 + 11 + 9 + 10 = 98
98/9 = 10.88888889
Second, minus every number with the mean.
12 - 10.88888889 = 1.11111111
11 - 10.88888889 = 0.11111111
14 - 10.88888889 = 3.111111111
10 - 10.88888889 = -0.8888888889
8 - 10.88888889 = -2.888888889
13 - 10.88888889 = 2.111111111
11 - 10.88888889 = 0.11111111
9 - 10.88888889 = -1.888888889
10 - 10.88888889 = -0.8888888889
Third, square all the differences.
(1.11111111)² = 1.234567901
(0.11111111)² = 0.01234567901
(3.111111111)² = 9.679012345
(-0.8888888889)² = 0.7901234568
(2.888888889)² = 8.345679013
(2.111111111)² = 4.456790123
(0.11111111)² = 0.01234567901
(1.888888889)² = 3.567901235
(-0.8888888889)² = 0.7901234568
Fourth, calculate the variance.
To calculate the variance, add all of the squared differences.
1.234567901 + 0.01234567901 + 9.679012345 + 0.7901234568 + 8.345679013 + 4.456790123+0.01234567901 + 3.567901235 + 0.7901234568 = 28.88888889
Next is divide the sum of squared differences to 9(count of the numbers) - 1
28.88888889/8 = 3.611111111
Lastly, take the root of the variance.
[tex] \sqrt{3.611111111} [/tex]
= 1.900292375