prove: 1 - cot^2 (theta) / 1 + cot^2 (theta) = sin^2 (theta) - cos^2 (theta)

Sagot :

\frac{1-cot ^{2}}{1+cot ^{2}} =sin ^{2} - cos^{2} 
 \frac{1- \frac{cos ^{2} }{sin ^{2} } }{csc ^{2} } =sin ^{2} - cos^{2} 
 \frac{sin ^{2}-cos ^{2} }{sin ^{2} } * sin^{2} =sin ^{2} - cos^{2} 
sin ^{2} - cos^{2} =sin ^{2} - cos^{2}

pythagorian,division and reciprocal identity