t varies directly as m and inversely as the square of n. If t=32 when m=16 and n=4, find t when m=24 and n=6​

Sagot :

Answer:

The value of t when m = 24 and n = 6 is 128.

Step-by-step explanation:

Mathematical Sentence:

[tex]t=\frac{mk}{n^2}[/tex]

Solution for the constant of variation or k:

Given:   [tex]t=32[/tex],   [tex]m=16[/tex],   [tex]n=4[/tex]

Find:   [tex]k=?[/tex]

Formula:   [tex]t=\frac{mk}{n^2}[/tex]

Solution:

[tex]t=\frac{mk}{n^2}\\32=\frac{16k}{(4)^2}\\32=\frac{16k}{16}\\32=k[/tex]

Solution for t:

Given:   [tex]k=32[/tex],   [tex]m=24[/tex],   [tex]n=6[/tex]

Find:   [tex]t=?[/tex]

Formula:   [tex]t=\frac{mk}{n^2}[/tex]

Solution:

[tex]t=\frac{mk}{n^2}\\t=\frac{24(32)}{6}\\t=4(32)\\\boxed{t=128}[/tex]

#CarryOnLearning