using quadratic formula method

1.2y²=1-2y

using factoring method

1.2m²-2m-12=0


Sagot :

Quadratic Formula

1.)

[tex]y = \frac{ - 1}{2} + \frac{1}{2} \sqrt{3} [/tex]

Factoring Method

1.)

[tex] \frac{m = 3}{m = - 2} [/tex]

Step-by-step explanation:

Quadratic Formula

Step 1:

Simplify both sidra of the equation.

[tex]2y {}^{2} = - 2y + 1[/tex]

Step 2:

Subtract -2y+1 from both sidra.

[tex]2y {}^{2} - ( - 2y + 1) = - 2y + 1 - ( - 2y + 1)[/tex]

[tex]2y {}^{2} + 2y - 1 = 0[/tex]

For this equation: a = 2, b = 2.

c = -1

[tex]2y {}^{2} + 2y + - 1 = 0[/tex]

Step 3:

Use Quadratic Formula with a = 2, b = 2, c = -1.

[tex]y = \frac{ - b + - \sqrt{b {}^{2} - 4ac } }{2a} [/tex]

[tex]y = \frac{ - (2) + - \sqrt{(2) {}^{2} - 4(2)( - 1)} }{2(2)} [/tex]

[tex]y = \frac{ - 2 + - \sqrt{12} }{4} \\ y = \frac{ - 1 }{2} + \frac{1}{2} \sqrt{3} \: \: \: or \: \: y = \frac{ - 1}{2} + \frac{ - 1}{2} \sqrt{3} [/tex]

Factoring Method

Step 1:

Davide both sides by 2.

[tex]m {}^{2} - m - 6 = 0[/tex]

To Salve the equation, factor the left hand side by Groupon. First, left hand side needs to be rewritten as m² + am + be -6. To find a and b, set up a system to be solved.

[tex]a + b = - 1 \\ ab = 1( - 6) = - 6[/tex]

Since ab is negative, a and b have the opposite signs. Since a + b is negative, the negative number has greater absolute value than the positive. List all such integer para that give product –6.

[tex]1. - 6[/tex]

[tex]2. - 3[/tex]

Calculate the sum for each pair.

Answer:

1.

[tex]y = \frac{ - 1}{2} + \frac{1}{2} \sqrt{3} [/tex]

2.)

[tex]1.) \frac{ m = 3}{m = - 3} [/tex]