Answer:
Step-by-step explanation:
[tex]2x^2 + 9x = 10[/tex]
Subtract 10 to both sides
[tex]2x^2+ 9x - 10[/tex]
All equations in the form of [tex]ax^2 + bx + c[/tex] can be solved using quadratic formula[tex]x = \frac{-b±\sqrt{b^2-4ac} }{2a}[/tex]
Thus, a = 2, b = 9 and c = -10
[tex]x = \frac{-9±\sqrt{9^2-4(2)(-10)} }{2(2)}[/tex]
[tex]x = \frac{-9±\sqrt{81+80} }{4}[/tex]
[tex]x=\frac{-9±\sqrt{161} }{4}[/tex]
Therefore [tex]x = \frac{\sqrt{161} -9}{4}[/tex] ≈ 0.922 or [tex]x = \frac{-\sqrt{161}-9 }{4}[/tex]≈ −5.422
#CarryOnLearning