Sagot :
Answer:
CONVERTING LINEAR EQUATION INTO STANDARD FORM
Solution:
1. [tex]\sf{3 (x - 2) + 4 (y + 1) = 5x - y + 10}[/tex]
- Distributive Property
[tex]\sf{3 (x) + 3 (-2) + 4 (y) + 4(1) = 5x - y + 10}[/tex]
[tex]\sf{3x - 6 + 4y + 4 = 5x - y + 10}[/tex]
- Reorder and combine the similar terms.
[tex]\sf{3x + 4y - 6 + 4 = 5x - y + 10}[/tex]
[tex]\sf{3x + 4y - 2 = 5x - y + 10}[/tex]
- Transposition Method
[tex]\sf{3x + 4y + y = 5x + 10 + 2}[/tex]
[tex]\sf{3x + 5y = 5x + 12}[/tex]
- Combine similar terms
[tex]\sf{3x - 3x + 5y = 5x - 3x + 12}[/tex]
[tex]\sf{5y = 2x + 12}[/tex]
- Divide both sides by 5.
[tex]\sf{\frac{5y}{5} = \frac{2x + 12}{5}}[/tex]
[tex]\sf{y = \frac{2}{5}x + \frac{12}{5}}[/tex]
Final answer
[tex]\boxed{\sf{y = \frac{2}{5}x + \frac{12}{5}}}[/tex]
2. [tex]\sf{6x - 2 (y + 3) = 2 (x + 5) - 12}[/tex]
- Simplify.
[tex]\sf{6x - 2y + 6 = 2x + 10 - 12}[/tex]
[tex]\sf{6x - 2y + 6 = 2x - 2}[/tex]
- Transpose the constant and 6x to the right side.
[tex]\sf{-2y = 2x - 6x - 6 - 2}[/tex]
- Simplify.
[tex]\sf{-2y = -4x - 8}[/tex]
- Divide both sides by -2.
[tex]\sf{\frac{-2y}{-2} = \frac{-4x - 8}{-2}}[/tex]
[tex]\boxed{\sf{y = 2x + 4}}[/tex]
#CARRYONLEARNING