Sagot :
2sin^2 225 - tan135
2(-sqrt(2)/2) - (-sqrt(2)/2)
-2sqrt(2)/2 + sqrt(2)/2
=-sqrt(2) /2
Hope this helps :)
If you want a more detailed solution, please don't hesitate to send me a message
2(-sqrt(2)/2) - (-sqrt(2)/2)
-2sqrt(2)/2 + sqrt(2)/2
=-sqrt(2) /2
Hope this helps :)
If you want a more detailed solution, please don't hesitate to send me a message
The reference angle of 225º is 45º. Since it is in QIII, sin 225º = -[tex] \frac{ \sqrt{2} }{2} [/tex].
The reference angle of 135º is also 45º. Since it is in QII, tan 135º = -1
Substituting those values, we have
2 (-[tex] \frac{ \sqrt{2} }{2} [/tex] )² - (-1)
= 2 (2/4) + 1 = 2
The reference angle of 135º is also 45º. Since it is in QII, tan 135º = -1
Substituting those values, we have
2 (-[tex] \frac{ \sqrt{2} }{2} [/tex] )² - (-1)
= 2 (2/4) + 1 = 2