Rode is 10 years older than macoy. Marten is 6 years younger than rode. If the sum of their ages is 65, how old is each?

Sagot :

Let 'x' be Rode's age
      'y' be Macoy's age
      'z' be Marten's age
---------------------------------------------
From the statement, 'Rode is 10 years older than Macoy'
x = y + 10    ----equation 1
---------------------------------------------
From the statement, 'Marten is 6 years younger than Rode'
z = x - 6    ------equation 2
---------------------------------------------
The sum of their ages is 65
x + y + z = 65    -----equation 3
--------------------------------------------
From equation 1
x = y + 10
Expressing y in terms of x you'll have
y = x - 10    ----equation 1'
-------------------------------------------
Substitute equations 1' and 2 to equation 3
x + y + z = 65
x + (x-10) + (x-6) = 65
x + x - 10 + x - 6 = 65
x + x + x = 65 + 10 + 6
3x = 81
x = 27 ---Rode's age
-------------------------------------------
Substitute x=27 to equations 1' and 2
y = x - 10
y = 27 - 10
y = 17  ---Macoy's age
z = x- 6
z = 27 - 6
z = 21  ----Marten's age
--------------------------------------------
Therefore Rode is 27 yrs old, Macoy is 17 yrs old and Marten is 21 yrs old.