identities of cotangent(x)cosine(x)=cosecant(x)-sine(x)

Sagot :

cot (x) cos (x) = csc (x) - sin (x) 
= [tex] \frac{cos(x)}{sin(x)} [/tex] cos (x) = [tex] \frac{1}{sin(x)} [/tex] - sin (x) 
= [tex] \frac{ cos^{2}(x) }{sin(x)} [/tex] = [tex] \frac{1}{sin(x)} - \frac{ sin^{2}(x) }{sin(x)} [/tex]
= [tex] \frac{ cos^{2}(x) }{sin(x)} = \frac{1- sin^{2}(x) }{sin(x)} [/tex]
removing the denominator in both sides
=[tex] cos^{2} (x) = 1- sin^{2} (x)[/tex]
=[tex] cos^{2} + sin^{2} = 1 [/tex]
this equation is actually the identity.