Find the value of K so that the lines Kx - 2y = 4 and x + 3y = 7 will be parallel.



Sagot :

Transform the equations into slope-intercep form:
Kx - 2y = 4      ––>      y = 
[tex] \frac{K}{2} [/tex]x -2
x + 3y = 7       ––>       y = [tex] \frac{-1}{3} [/tex]x + [tex] \frac{7}{3} [/tex]

For two equations to be parallel, their slope should be equal.
[tex] \frac{k}{2} [/tex] = [tex] \frac{-1}{3} [/tex]
k =  -2/3
kx-2y=4   --equation 1
x+3y=7    --equation 2

Transform each equation to y=mx+b; where m=slope
y=(kx)/2 -2   equation 3
y=-x/3 +7     equation 4

Since parallel lines have the same slope, we equate:
(kx)/2 =-x/3    multiplying both sides by 1/x
k/2 =-1/3
k=-2/3

Substitute k=-2/3 in equation 3
y=-x/3 -2