Reduce the following:

 

                               sec x  csc x

sec x ( sec x)  + csc  x ( csc x)



Sagot :

TRIGONOMETRIC FUNCTIONS

Reduce

[tex]\sf{ \dfrac{ \sec(x) \csc(x) }{ \sec(x) \sec(x) + \csc(x) \csc(x) } }[/tex]

Applying the reciprocal of the functions and the laws of exponents

[tex]\sf{ \dfrac{ \dfrac{1}{ \sin(x) \cos(x) } }{ \sec(x) \sec(x) + \csc(x) \csc(x) } }[/tex]

[tex]\sf{ \dfrac{ \dfrac{1}{ \sin(x) \cos(x) } }{ \sec(x)^{2} + \csc(x) ^{2} } }[/tex]

[tex]\sf{ \dfrac{ \dfrac{1}{ \sin(x) \cos(x) } }{ \dfrac{1}{ \cos(x) ^{2} \sin(x) ^{2} } } }[/tex]

Apply the equation as division of functions.

[tex]\sf{ \dfrac{1}{ \sin(x) \cos(x) } \div \dfrac{1}{ \cos(x)^{2} \sin(x)^{2} } }[/tex]

[tex]\sf{ \dfrac{1}{ \sin(x) \cos(x) } \times \dfrac{ \cos(x)^{2} \sin(x)^{2}}{ 1 } }[/tex]

[tex] \sf{ \dfrac{ \cos(x)^{2} \sin(x) ^{2} }{ \sin(x) \cos(x) } }[/tex]

[tex]\sf\green{ \sin(x) \cos(x) }[/tex]

#CarryOnLearning