prove that sinx + tanx ÷ 1+secx  =   sinx 

Sagot :

Please zoom in your screen if you're having trouble reading small texts. The following equations will look small.

The equation is this:
[tex] \frac{sinx+ tanx }{1+secx } =sinx[/tex]

Recall these identities:
[tex]tanx= \frac{sinx}{cosx} [/tex]
[tex] secx= \frac{1}{cosx} [/tex]

Doing the necessary substitution, we get:
[tex] \frac{sinx+ \frac{sinx}{cosx} }{1+ \frac{1}{cosx} } =sinx[/tex]

Combining, we will have:
[tex]( \frac{sinxcosx+sinx}{cosx}) /( \frac{cosx+1}{cosx})=sinx [/tex]

When we divide, we multiply the numerator by the reciprocal of the denominator, we get:
[tex] \frac{sinxcosx+sinx}{cosx}* \frac{cosx}{cosx+1}=sinx [/tex]

We cancel cosx, then we get:
[tex] \frac{sinxcosx+sinx}{cosx+1}=sinx[/tex]

Factor sinx from the numerator,
[tex] \frac{sinx(cosx+1)}{cosx+1}=sinx[/tex]

Cancel cosx+1,
[tex]sinx=sinx[/tex]

Yay.

Hope that helps.