Sagot :
[tex]1)\\\\m=-1; \ \ (3,-4) \\ \\To \ find \ our \ equation \ we \ will \ use \ the \ formula: \\ \\ y - y _{1} = m(x - x _{1}) \\ \\ y+4=-1\cdot (x-3)\\\\y+4= -x+3 \\ \\y= -x+3-4\\ \\y= -x-1[/tex]
[tex]2. \\\\(-2,4) \ and \ (2,-3) \\\\ First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} } \\ \\m=\frac{ -3-4}{2+2} = -\frac{7}{4}[/tex]
[tex] Use \ point \ form \ of \ a \ line\ with \ one \ point: \\ \\ y-y_{1} =m(x-x _{1})\\\\y-4=-\frac{7}{4}(x+2)\\\\ y-4=-\frac{7}{4} x-\frac{7}{2}\\\\ y =-\frac{7}{4} x- 3 \frac{1}{2}+4\\\\ y =-\frac{7}{4} x+ \frac{1}{2}[/tex]
[tex]2. \\\\(-2,4) \ and \ (2,-3) \\\\ First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} } \\ \\m=\frac{ -3-4}{2+2} = -\frac{7}{4}[/tex]
[tex] Use \ point \ form \ of \ a \ line\ with \ one \ point: \\ \\ y-y_{1} =m(x-x _{1})\\\\y-4=-\frac{7}{4}(x+2)\\\\ y-4=-\frac{7}{4} x-\frac{7}{2}\\\\ y =-\frac{7}{4} x- 3 \frac{1}{2}+4\\\\ y =-\frac{7}{4} x+ \frac{1}{2}[/tex]