prove na yung (secx-cscx)/(sinx-cosx)=(cscx)/(cosx) . . . hint po long equation yung pinakasagot and using 8 fundamental identities this is 8 fundamental identities csc(θ) = sec(θ) = cot(θ) = tan(θ) = cot(θ) = (sin(θ))2 + (cos(θ))2 = 1 1 + (tan(θ))2 = (sec(θ))2 1 + (cot(θ))2 = (csc(θ))2
prove that (sec x - csc x)/(sin x - cos) = csc x/cos x (sec x - csc x)/(sin x - cos x) = 1/cos x - 1/sin x = ( sin x - cos x)/(sin x cos x)(sin x - cos x) cancelled ( sin x - cos x) what remains is 1/sin x cos x = 1/sin x . 1/cos x = csc x/cos x