find the volume of a right circular cone having a slant height of 6 meters and an altitude of 4.5 meters.

Sagot :

slant height = 6m
altitude =  4.5m
radius of the base of cone =  r² =  6² - (4.5)²= 15.75
                                               r=  √15.75 = 3.968
Vol of cone = 1/3 area of base x altitude
thus
vol =  1/3 πr²a              a  = altitude
     =  1/3 π (3.968)² * 4.5
     ~ 74.229m³
use pythagoras theorem to find the radius of the cone





[tex]slant \ height : \ l= 6 \ m \\ height: \ h= 4,5 \ m\\\\ Volume \ of \ a \ Cone : \\\\ V=\frac{1}{3}\pi r^2h\\\\use \ the \ Pythagorean \ Theorem \\\\l^2=h^2+r^2 \\ r^2=l^2-h^2\\ r^2=6^2-(4,5)^2 \\r^2 =36-20,25 \\r^2=15,75\\r=\sqrt{15,75} \approx 4 \ m\\ \\V=\frac{1}{3}\cdot \pi \cdot 4^2\cdot 4,5 =1,5\cdot 16 \pi=24 \pi \ m^3 \\ \\V\approx 24\cdot 3.14 = 75,4 \ m^3[/tex]
View image Riza1