what error can you pinpoint to disprove that 2=1?


Sagot :

2^2 is 4.
1^2 is 1.

That's it.
Let                                               a=b
Multiply both sides by a              axa=axb
                                                   a²=ab
Subtract both sides by b²           a²-b²=ab-b²
Factor                               (a+b)(a-b)=b(a-b)
Divide both side by a-b  (a+b)(a-b)/a-b=b(a-b)/a-b
                                                 a+b=b
Since a=b ; then,                        b+b=b
                                                   2b=b
Divide both sides by b                 2b/b=b/b
                                                     2=1

 The error in this one is the a-b because base on the proof above ; a=b
a-b is like 1-1 and it gives you 0