1. Find the area of the shaded region. Express it in factored form.
2. Express the area and perimeter of the shaded in factored form. 

((HELP ME PLS I REALLY NEED IT RN))


1 Find The Area Of The Shaded Region Express It In Factored Form2 Express The Area And Perimeter Of The Shaded In Factored Form HELP ME PLS I REALLY NEED IT RN class=
1 Find The Area Of The Shaded Region Express It In Factored Form2 Express The Area And Perimeter Of The Shaded In Factored Form HELP ME PLS I REALLY NEED IT RN class=

Sagot :

1) Area of larger region = (3x-5)(3x-5) 
   Area of smaller region =  (x+1)(x+1)
 
Subtract area of smaller region from area of larger region:

[tex] (3x-5)(3x-5) - (x+1)(x+1)[/tex]

[tex]9x^2 -30x +25 - (x^2+2x+1) = 9x^2 -30x +25 -x^2-2x-1[/tex]

[tex]8x^2 -32x +24 = 8(x^2-4x+3)[/tex]

[tex]\boxed{8(x-3)(x-1)}[/tex]



2) Length of shaded region = a³ - b³
    Width of shaded region = a² + ab +b²

[tex]Perimeter=2(l + w)=2(a^3-b^3+a^2+ab+b^2)[/tex]

(But [tex]a^3-b^3= (a-b)(a^2+ab+b^2)[/tex] )

So, [tex]2(a^3-b^3+a^2+ab+b^2) = 2[(a-b)(a^2+ab+b^2)+(a^2+ab+b^2)][/tex]

Final factored form for perimeter = [tex]\boxed{2(a^2+ab+b^2)(a-b+1)}[/tex]


[tex]Area = l\times w= (a^3-b^3)(a^2+ab+b^2)[/tex]

(But [tex]a^3-b^3= (a-b)(a^2+ab+b^2)[/tex] )

So, the final factored form for Area = [tex]\boxed{(a-b)(a^2+ab+b^2)^2}[/tex]