The resistance of a wire varies inversely as its cross-sectional area. Which has a higher resistance: thick wire or thin wire? The resistance of a 2.5 mm radius wire is 5.62 ohms. What is the resistance of a wire of the same material whose radius is 4.25 mm?

Sagot :

[tex]R = \frac{k}{A} [/tex]      , where R=resistance , A=area, k=constant of variation

A thick wire would have less resistance than a thin wire.

Manipulating the equation will give us [tex]k=RA[/tex]

Since [tex]A=\pi r^2[/tex]

[tex]k=R\pi r^2 [/tex]


Given: R₁ = 5.62 Ω    r₁=2.5mm
           R₂ = ?           r₂=4.25mm


[tex]R_1\pi (r_1)^2=R_2\pi (r_2)^2[/tex]

[tex]R_2 =\frac{R_1\pi (r_1)^2}{\pi (r_2)^2}[/tex]

[tex]R_2 =\frac{R_1(r_1)^2}{(r_2)^2}[/tex]

[tex]R_2 =\frac{(5.62)(2.5)^2}{(4.25)^2}[/tex]

[tex]\boxed{R_2=1.94ohms}[/tex]