Sagot :
ANSWER:
[tex]\boxed{ \bold{ \: I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{x }{ \sqrt{3 (x - 1} )} ) + c }}[/tex]
SOLUTION:
[tex]\tt \:\int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x + 1}} \: dx \\ [/tex]
First, let's take I as [tex] \implies[/tex] [tex]\tt \:\int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x + 1}} \: dx \\[/tex].
[tex]\tt \:I = \int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x +1}} \: dx \\\tt \: I =\int \: \frac{ x + 2 }{( {x}^{2} + 2x + 1 + x + 2) \sqrt{x + 1}} \: dx \\ \tt \:I =\int \: \frac{ x + 2 }{( ({x + 1}^{2}) + x + 2) \sqrt{x + 1}}[/tex]
Let, x + 1 = m² [tex] \implies[/tex] dx = 2mdm.
[tex]\tt \:I =\int \: \frac{ {m}^{2} + 1}{ {m}^{4} + {m}^{2} + 1 \cdot \: m} 2mdm \\ \tt \:I =\int \: \frac{ {m}^{2} + 1}{ {m}^{4} + {m}^{2} + 1 \cdot \: \bcancel{ m}} 2 \bcancel{m}dm \\ \tt \: I = \: \int \: \frac{ {m}^{2} + 1}{ {m}^{4} + {m}^{2} + 1 } 2dm[/tex]
Now, divide the numerator & denominator by m²...we'll get it as...
[tex]\tt \:I =2\int \: \frac{ 1 + \frac{1}{ {m}^{2} } }{ {m}^{2} + 1 + \frac{1}{ {m}^{2} } } \: dm \\\tt \: I =2\int \: \frac{ 1 + \frac{1}{ {m}^{2} } }{( {m}^{2} + \frac{1}{ {m}^{2} } - 2) + 3} \: dm \\\tt \: I =2\int \: \frac{ (1 + \frac{1}{ {m}^{2} }) \: dm }{ ({m} - \frac{1}{ m } ) ^{2} + 3}[/tex]
Now, let m - 1/m be t [tex] \implies[/tex] (1 + 1/m²) dm = dt
[tex]\tt \:I =2\int \: \frac{ dt}{ {t}^{2} + 3 } \\ \tt \:I = 2\int \: \frac{ dt}{ {t}^{2} + ( \sqrt{3}) ^{2} }[/tex]
We know, [tex]\tt \:\int \: \frac{dx}{ {x}^{2} + a ^{2} } = \frac{1}{a} tan ^{ - 1} (\frac{x}{a} ) + c[/tex] ...therefore...
[tex]\tt \:I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{t}{ \sqrt{3} } ) + c \: \rightarrow \boxed{ \tt \: eq. \: 1} [/tex]
Now, substitute the value of 't' in eq. 1..we'll get..
[tex]\tt \:I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{m - \frac{1}{m} }{ \sqrt{3} } ) + c \: \rightarrow \boxed{ \tt \: eq. \: 2}[/tex]
Now, substitute the value of 'm' in eq. 2...we'll get...
[tex]\tt \: I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{ \sqrt{x + 1} - \frac{1}{ \sqrt{x - 1} } }{ \sqrt{3} } ) + c \\ \tt \:I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{x + 1 - 1}{ \sqrt{3} \sqrt{x - 1} } ) + c \\ \boxed{\boxed{ \bold{ \: I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{x }{ \sqrt{3 (x - 1} )} ) + c }}}[/tex]
The correct answer is option B.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬