Answer:
=3x4+5x3+4x2+x−1
step by step: =(3x2+2x+−1)(x2+x+1)
=(3x2+2x+−1)(x2+x+1)=(3x2)(x2)+(3x2)(x)+(3x2)(1)+(2x)(x2)+(2x)(x)+(2x)(1)+(−1)(x2)+(−1)(x)+(−1)(1)
=(3x2+2x+−1)(x2+x+1)=(3x2)(x2)+(3x2)(x)+(3x2)(1)+(2x)(x2)+(2x)(x)+(2x)(1)+(−1)(x2)+(−1)(x)+(−1)(1)=3x4+3x3+3x2+2x3+2x2+2x−x2−x−1
=(3x2+2x+−1)(x2+x+1)=(3x2)(x2)+(3x2)(x)+(3x2)(1)+(2x)(x2)+(2x)(x)+(2x)(1)+(−1)(x2)+(−1)(x)+(−1)(1)=3x4+3x3+3x2+2x3+2x2+2x−x2−x−1=3x4+5x3+4x2+x−1