2. The area of the square tile is x² + 10x + 25 cm². Find the length of the side of a square. a. State what is asked to find. b. State the given facts. c. Write a working equation. d. Solve the equation. US DOCINer e. state your answer​

2 The Area Of The Square Tile Is X 10x 25 Cm Find The Length Of The Side Of A Square A State What Is Asked To Find B State The Given Facts C Write A Working Equ class=

Sagot :

Answer:

[tex] \large \boxed{x + 5}[/tex]

Step-by-step explanation:

a) State what's asked to find [tex] \downarrow[/tex]

  • The length of the side of the square.

b) State the given facts [tex] \downarrow[/tex]

  • Area of the tile = x² + 10x + 25 cm²

c) Write a working equation[tex] \downarrow[/tex]

We know that, area of a square = side of the square × side of the square. Let's take the side of the tile (square) as 's'. So, the equation is...

  • x² + 10x + 25 = s × s

d) Solve the equation [tex] \downarrow[/tex]

[tex]\tt {x}^{2} + 10x + 25 = s \times s \\ \\ \sf \: s \: \times \: s \: is \: equal \: to \: {s}^{2} \\ \\ \tt \: {x}^{2} + 10x + 25 = {s}^{2} \\ \\ \sf \: Using \: split \: the \: middle \: term \: method.. \\ \\ \tt \: {x}^{2} + 10x + 25 = {s}^{2} \\ \tt \: \left(x^{2}+5x\right)+\left(5x+25\right) = {s}^{2} \\ \tt x\left(x+5\right)+5\left(x+5\right) = {s}^{2} \\ \tt \: \left(x+5\right)\left(x+5\right) = {s}^{2} \\ \tt\left(x+5\right)^{2} = {s}^{2} \\ \\ \sf \: Now \: squaring \: on \: both \: the \: sides.. \\ \\ \tt \: \sqrt{(x + 5) ^{2} } = \sqrt{ {s}^{2} } \\ \large \boxed{\boxed{ \bold {\: (x + 5) = s}}}[/tex]

e) State your answer [tex] \downarrow[/tex]

The length of 1 side of the square is x + 5 cm.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬