Answer:
Explanation:
Based on the problem we are given the following,
[tex]P_{1} = 3atm[/tex]
[tex]T_{1} = 127° + 273.15 = 400.15k[/tex]
[tex]T_{2} = 227°C + 273.15 = 500.15k[/tex]
[note temperature should always be in absolute value (kelvin) thus we convert temperature by using K= °C+273.15]
Required,
[tex]P_{2} = ?[/tex]
Solution,
Since volume is constant, Gay-Lussac's formula will be used,
[tex] \frac{P_{1} }{T_{1} } = \frac{P_{2} }{T_{2} } [/tex]
Rearranging the formula we have,
[tex]P_{2} = \frac{P_{1} T_{2} }{T_{1} } [/tex]
[tex]P_{2} = \frac{3atm \times 500.15k}{400.15k} \\ P_{2} = 3.75atm[/tex]