On a clean sheet of paper, compute the 3rd and 5th Fibonacci numbers using Binet's formula.

Binet's Formula
Given in 1943 by Jacques Philippe Marie Binet. An explicit formula used to find the nth term of the Fibonacci sequence. The formula is f_n = \frac{1}{\sqrt{5} }
5
1
[\frac{1 + \sqrt{5} }{2}
2
1+
5
ⁿ - [\frac{1 - \sqrt{5} }{2}
2
1−
5
ⁿ. n is the number of terms in the Fibonacci sequence. This is derived from the general form of quadratic equation.
Solutions:
a. Given: Binet's Formula: f_n = \frac{1}{\sqrt{5} }
5
1
[\frac{1 + \sqrt{5} }{2}
2
1+
5
ⁿ - [\frac{1 - \sqrt{5} }{2}
2
1−
5
ⁿ
n = 29
f_n = \frac{1}{\sqrt{5} }
5
1
[\frac{1 + \sqrt{5} }{2}
2
1+
5
ⁿ - [\frac{1 - \sqrt{5} }{2}
2
1−
5
ⁿ
Find the 29th term of the Fibonacci sequence.
f₂₉ = \frac{1}{\sqrt{5} }
5
1
[\frac{1 + \sqrt{5} }{2}
2
1+
5
²⁹ - [\frac{1 - \sqrt{5} }{2}
2
1−
5
²⁹
f₂₉ = \frac{1}{2.2360679775}
2.2360679775
1
[\frac{1 + 2.2360670775}{2}
2
1+2.2360670775
²⁹ - [\frac{1 - 2.2360679775}{2}
2
1−2.2360679775
f₂₉ = .447213595[\frac{3.2360679775}{2}
2
3.2360679775
²⁹ - [\frac{-1.2360679775}{2}
2
−1.2360679775
²⁹
f₂₉ = .447213595 [(1.61803399)²⁹ - (-.618033989)²⁹]
f₂₉ = (.447213595)(1,149,851.6190675)
f₂₉ = 514,229
Find the 30th term of the Fibonacci sequence.
f₃₀ = \frac{1}{\sqrt{5} }
5
1
[\frac{1 + \sqrt{5} }{2}
2
1+
5
³⁰ - [\frac{1 - \sqrt{5} }{2}
2
1−
5
³⁰
f₃₀ = \frac{1}{2.2360679775}
2.2360679775
1
[\frac{1 + 2.2360670775}{2}
2
1+2.2360670775
³⁰ - [\frac{1 - 2.2360679775}{2}
2
1−2.2360679775
³⁰
f₃₀ = .447213595[\frac{3.2360679775}{2}
2
3.2360679775
³⁰ - [\frac{-1.2360679775}{2}
2
−1.2360679775
³⁰
f₃₀ = .447213595 [(1.61803399)³⁰ - (-.618033989)³⁰]
f₃₀ = (.447213595)[1860498.04 - (-.0000000537490506)]
f₃₀ = (.447213595)(1860498.04)
f₃₀ = 832,040
b. Find the 31st term of the Fibonacci sequence.
31st term = 29th term + 30th term
f₃₁ = f₂₉ + f₃₀
f₃₁ = 514,229 + 832,040
f₃₁ = 1,346,269
What is the Binet's Formula: https://brainly.ph/question/4959269
#LearnWithBrainly