Sagot :
Answer:
1.
[tex] \sqrt[3]{64} [/tex]
Factor and rewrite the radical in a exponential form.
[tex] \sqrt[3]{4 {}^{3} } [/tex]
Simplify the radical expression
[tex] = 4[/tex]
2.
[tex] \sqrt{121} [/tex]
[tex] \sqrt{11 {}^{2} } [/tex]
[tex] = 11[/tex]
3.
[tex] \sqrt[4]{240} [/tex]
Transform the expression
[tex] \sqrt[4]{2 {}^{4} \times 15} [/tex]
Rewrite the expression using :
[tex] \sqrt[n]{ab \: } = \sqrt[n]{a} \times \sqrt[n]{b} [/tex]
[tex] \sqrt[4]{2 {}^{4} } \times \sqrt[4]{15} [/tex]
Simplify the radical expression
[tex] = 2 \sqrt[4]{15} [/tex]
alternate form:
~3.935979
DIRECTION :
- A. Simplify the radicals.
[tex]\red{⊱┈─────────────────────────┈⊰}[/tex]
[tex] \tt GIVEN : [/tex]
- ³√64
- √121
- ⁴√240
1)
- Factor the number: [tex] \tt \small 64 = {4}^{3} [/tex]
[tex] \tt \orange { \sqrt[3]{ {4}^{3} } }[/tex]
- Apply the radical rule :[tex] \tt { \sqrt[n]{ {a}^{n} } = a , \: \: \: \: a ≥0 }[/tex]
ANSWER :
[tex]\small\colorbox{black}{\color{skyblue}{\boxed{4}}}[/tex]
=========================================
2)
- Factor the numbers : [tex] \tt \small 121 = {11}^{2} [/tex]
[tex] \tt \orange{ \sqrt{ {11}^{2} } }[/tex]
- Apply the radical rule : [tex] \tt \small \sqrt{ {a}^{2}} = a, \: \: \: a≥0[/tex]
ANSWER :
[tex]\small\colorbox{black}{\color{skyblue}{\boxed{11}}}[/tex]
=========================================
3)
- Apply the radical rule : [tex] \tt \small \sqrt[n]{ {a}^{b} } = \sqrt[n]{a} \: \: \sqrt[n]{b} , \: \: a≥0, b≥0[/tex]
[tex] \tt \orange{ \sqrt[4]{ {2}^{4}} \: \: \sqrt[4]{3 \: · \: 5} }[/tex]
- Apply the radical rule again:[tex] \tt \small \sqrt[n]{ {a}^{n} } = a, \: \: a≥0[/tex]
[tex] \tt \orange{2 \sqrt[4]{3 \: · \: 5}}[/tex]
- Multiply the numbers:
[tex] \tt \small\orange{3 \: · \: 5 = 15}[/tex]
ANSWER :
[tex]\small\colorbox{black}{\color{skyblue}{\boxed{2 \sqrt[4]{15} }}}[/tex]
-----------------------------------------------------------------
❦ⒹⒾⒺⓅ⑨⑨❦