Simplifying Radical Expressions.


Simplifying Radical Expressions class=

Sagot :

Answer:

1.

[tex] \sqrt[3]{64} [/tex]

Factor and rewrite the radical in a exponential form.

[tex] \sqrt[3]{4 {}^{3} } [/tex]

Simplify the radical expression

[tex] = 4[/tex]

2.

[tex] \sqrt{121} [/tex]

[tex] \sqrt{11 {}^{2} } [/tex]

[tex] = 11[/tex]

3.

[tex] \sqrt[4]{240} [/tex]

Transform the expression

[tex] \sqrt[4]{2 {}^{4} \times 15} [/tex]

Rewrite the expression using :

[tex] \sqrt[n]{ab \: } = \sqrt[n]{a} \times \sqrt[n]{b} [/tex]

[tex] \sqrt[4]{2 {}^{4} } \times \sqrt[4]{15} [/tex]

Simplify the radical expression

[tex] = 2 \sqrt[4]{15} [/tex]

alternate form:

~3.935979

DIRECTION :

  • A. Simplify the radicals.

[tex]\red{⊱┈─────────────────────────┈⊰}[/tex]

[tex] \tt GIVEN : [/tex]

  1. ³√64
  2. √121
  3. ⁴√240

1)

  • Factor the number: [tex] \tt \small 64 = {4}^{3} [/tex]

[tex] \tt \orange { \sqrt[3]{ {4}^{3} } }[/tex]

  • Apply the radical rule :[tex] \tt { \sqrt[n]{ {a}^{n} } = a , \: \: \: \: a ≥0 }[/tex]

ANSWER :

[tex]\small\colorbox{black}{\color{skyblue}{\boxed{4}}}[/tex]

=========================================

2)

  • Factor the numbers : [tex] \tt \small 121 = {11}^{2} [/tex]

[tex] \tt \orange{ \sqrt{ {11}^{2} } }[/tex]

  • Apply the radical rule : [tex] \tt \small \sqrt{ {a}^{2}} = a, \: \: \: a≥0[/tex]

ANSWER :

[tex]\small\colorbox{black}{\color{skyblue}{\boxed{11}}}[/tex]

=========================================

3)

  • Apply the radical rule : [tex] \tt \small \sqrt[n]{ {a}^{b} } = \sqrt[n]{a} \: \: \sqrt[n]{b} , \: \: a≥0, b≥0[/tex]

[tex] \tt \orange{ \sqrt[4]{ {2}^{4}} \: \: \sqrt[4]{3 \: · \: 5} }[/tex]

  • Apply the radical rule again:[tex] \tt \small \sqrt[n]{ {a}^{n} } = a, \: \: a≥0[/tex]

[tex] \tt \orange{2 \sqrt[4]{3 \: · \: 5}}[/tex]

  • Multiply the numbers:

[tex] \tt \small\orange{3 \: · \: 5 = 15}[/tex]

ANSWER :

[tex]\small\colorbox{black}{\color{skyblue}{\boxed{2 \sqrt[4]{15} }}}[/tex]

-----------------------------------------------------------------

❦ⒹⒾⒺⓅ⑨⑨❦