Solve for x:

8x^2−3=2

Please provide a step-by-step answer.


Sagot :

[tex]\large{\tt{12:43\:nn\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:3/2/22}}[/tex]

[tex]\huge{\blue{\boxed{\gray{\mathbb{ANSWER}}}}}[/tex]

Solve for x: [tex]\rm{8x^{2} - 3 = 2}[/tex]

  • [tex]\Large\sf{\underline{\green{x = \dfrac{\sqrt{10}}{4}, -\dfrac{\sqrt{10}}{4}}}}[/tex]

[tex]\\[/tex]

[tex]\huge{\red{\boxed{\gray{\mathbb{SOLUTION}}}}}[/tex]

» We can solve this question by using the method of finding the square root.

» The given equation is:

  • [tex]\rm{8x^{2} - 3 =2}[/tex]

» Add 3 to both the sides of the equation:

  • [tex]\rm{8x^{2} = 2 + 3}[/tex]

» Now, add 2 & 3 to get 5:

  • [tex]\rm{8x^{2} = 5}[/tex]

» Dividing both of the sides of the equation by 8, we get:

  • [tex]\rm{x^{2} = \dfrac{5}{8}}[/tex]

» Now take the square root of both the sides of the equation:

  • [tex]\rm{x = \sqrt{\dfrac{5}{8}}}[/tex]

  • [tex]\rm{x = \dfrac{\sqrt{5}}{\sqrt{8}}}[/tex]

» Rationalize the denominator:

  • [tex]\rm{x = \dfrac{\sqrt{5}}{2\sqrt{2}}}[/tex]

  • [tex]\rm{x = \dfrac{\sqrt{5} \sqrt{2}}{2(\sqrt{2})^{2}}}[/tex]

  • [tex]\rm{x = \dfrac{\sqrt{5} \sqrt{2}}{2 × 2}}[/tex]

  • [tex]\rm{x = \dfrac{\sqrt{10}}{4}, -\dfrac{\sqrt{10}}{4}}[/tex]

=======================

#LearnWithBrainly

#CarryOnLearning