B. Solve for the measurement of x, y, and z.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \large \rm 5) \; x = 40\degree [/tex]
[tex] \qquad \large \rm 6) \; x = 96\degree [/tex]
[tex] \qquad \large \rm 7) \; y = 48\degree [/tex]
[tex] \qquad \large \rm 8) \; z = 48\degree [/tex]
[tex] \qquad \large \rm 9) \; x = 45\degree [/tex]
[tex] \qquad \large \rm 10) \; y = 45\degree [/tex]
*Please read and understand my solution. Don't just rely on my direct answer*
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
Number 5: The measure of an inscribed angle is half the measure of its intercepted arc.
Number 6: The measure of the central angle is as same as its intercepted arc.
Number 7: The measure of an inscribed angle is half the measure of its intercepted arc.
Number 8: The measure of an inscribed angle is half the measure of its intercepted arc.
Number 9 and 10: The arc is cut by the diameter, thus, its measure is 180°. The arc is divided into two congruent parts, thus, each part is 90°.
9) Find the measure of inscribed angle x that intercepts the arc measuring 90°
10) Find the measure of inscribed angle y that intercepts the arc measuring 90°
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ [tex] \large\qquad\qquad\qquad\tt 3/ 2/2022 [/tex]