B. Solve for the measurement of x, y, and z.​

B Solve For The Measurement Of X Y And Z class=

Sagot :

✒️CIRCLE

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \large \rm 5) \; x = 40\degree [/tex]

[tex] \qquad \large \rm 6) \; x = 96\degree [/tex]

[tex] \qquad \large \rm 7) \; y = 48\degree [/tex]

[tex] \qquad \large \rm 8) \; z = 48\degree [/tex]

[tex] \qquad \large \rm 9) \; x = 45\degree [/tex]

[tex] \qquad \large \rm 10) \; y = 45\degree [/tex]

*Please read and understand my solution. Don't just rely on my direct answer*

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

Number 5: The measure of an inscribed angle is half the measure of its intercepted arc.

  • [tex] x = \frac12(80\degree) [/tex]

  • [tex] x = 40\degree [/tex]

Number 6: The measure of the central angle is as same as its intercepted arc.

  • [tex] x = 96\degree[/tex]

Number 7: The measure of an inscribed angle is half the measure of its intercepted arc.

  • [tex] y = \frac12(96\degree) [/tex]

  • [tex] y = 48\degree [/tex]

Number 8: The measure of an inscribed angle is half the measure of its intercepted arc.

  • [tex] z = \frac12(96\degree) [/tex]

  • [tex] z = 48\degree [/tex]

Number 9 and 10: The arc is cut by the diameter, thus, its measure is 180°. The arc is divided into two congruent parts, thus, each part is 90°.

9) Find the measure of inscribed angle x that intercepts the arc measuring 90°

  • [tex] x = \frac12(90\degree) [/tex]

  • [tex] x = 45\degree [/tex]

10) Find the measure of inscribed angle y that intercepts the arc measuring 90°

  • [tex] y = \frac12(90\degree) [/tex]

  • [tex] y = 45\degree [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ [tex] \large\qquad\qquad\qquad\tt 3/ 2/2022 [/tex]