[tex]\tt 5.) \: _{4}P_{2} = \frac{4!}{(4 - 2) !} = \frac{4 !}{2 ! } \\ \\ \tt \frac{ \cancel1 \times \cancel2 \times 3 \times 4}{ \cancel1 \times \cancel2} = {{\red {\underline{12}}}} \\ \\ \tt 6.)_{5}P_{1} = \frac{5! }{(5 - 1) ! } = \frac{1 \times 2 \times 3 \times 4 \times 5}{1 \times 2 \times 3 \times 4} = {\red {\underline{5}}} \\ \\ \tt \: 7.)_{6}P_{2} = \frac{6 !}{4 !} = \frac{ \cancel1 \times \cancel 2 \times \cancel3 \times \cancel4 \times 5 \times 6}{ \cancel1 \times \cancel 2 \times \cancel3 \times \cancel4} \\ \tt \: = 5 \times 6 = {\red{ \underline{30}}} \\ \\ \tt \: 8.)_{6}P_{6} = \frac{6 ! }{0 ! } = 1 \times 2 \times 3 \times 4 \times 5 \times 6 = { \red{ \underline{72}}} \\ \\ \tt \: 9.)-4+7P_{4} = - 4 + \frac{7 !}{4 ! \: 3 ! } = - 4 + 35 = { \red{ \underline{31}}} \\ \\ \tt \: 10.)5 \cdot \: _{6}P_{5} = \frac{5 \times 6! }{1 ! } = 5 \times 720 = { \red{ \underline{3600}}} \\ \\ \\ \\ \\ \tt \: kindly \: swipe \: the \: answer \: thanks![/tex]
#CarryOnLearning