angle = 360
pahelp pls​


Angle 360pahelp Pls class=

Sagot :

Answer:

1. m<AOB = 75°

.. m<AOB= m<COD = 75°

m <AB = 75°

m<AD = 180° - m<AOB

= 180° - 75°

= 105°

m<ACB = 360° = m<AOB

= 360° - 75°

= 285°

Answer;

m<AB = 75°

m<AD = 105°

m<ACB = 285°

2. OA = 9cm AB = 12cm

OB² = OA² + AB²

[tex]ob = \sqrt{oa^{2} + ab {}^{2} } [/tex]

[tex] = \sqrt{ {9}^{2} + {12}^{2} } [/tex]

[tex] = \sqrt{81 + 144} [/tex]

[tex] = \sqrt{225} [/tex]

[tex] = 15cm[/tex]

Answer; OB = 15cm

3. m<AB = 90°

AB² = +

AB² = 81 + 81

AB² = 162

[tex]ab = \sqrt{162} [/tex]

Answer;

[tex] = 9\sqrt{2} [/tex]

hope it helps goodluck:>

PAMARK AS BRAINLIEST PO TNX <3

Answer:

1. m∠AOB= 75°

105°

285°

2. OB=15cm

3. AB is 9√2 cm

Step-by-step explanation:

1. arc AB= m∠AOB= 75°, the measure of the central angle is equal to the measure of its intercepted arc

  arc AD= 180°- arc AB = 180°-75°= 105° , 180° because BD is a straight line and arc BAD is a semicircle

  arc ACB = 360°- arc AB= 360°-75°=285°

2. a tangent is perpendicular to the circle at the point of tangency, so ΔBAO is a right triangle and we can use the Phytagorean Theorem here.

[tex](AB)^{2} + (AO)^{2} = (OB)^{2} \\\\(12cm)^{2} + (9cm)=(OB)^{2} \\144cm^{2} +81cm^{2} = (OB)^{2} \\225cm^{2} = (OB)^{2} \\\sqrt{(OB^{2}) } = \sqrt{225cm\\^{2} } \\OB = 15cm[/tex]

3. ΔBOA is an isosceles triangle since two sides are equal since they are both radii of Circle O, if arc AB is 90°, then ∠BOA is also 90°, therefore this is an isosceles right triangle (45-45-90 special right triangle), in a 45-45-90 right triangle, the hypotenuse is √2 times one of the leg, so if one leg measures 9 cm, then AB is 9√2 cm.

PA BRAINLIEST PO

SALAMΔT>, THΔNK YOU>, GRΔCIΔS, M∈RCI,