Sagot :
Answer:
1. m<AOB = 75°
.•. m<AOB= m<COD = 75°
m <AB = 75°
m<AD = 180° - m<AOB
= 180° - 75°
= 105°
m<ACB = 360° = m<AOB
= 360° - 75°
= 285°
Answer;
m<AB = 75°
m<AD = 105°
m<ACB = 285°
2. OA = 9cm AB = 12cm
OB² = OA² + AB²
[tex]ob = \sqrt{oa^{2} + ab {}^{2} } [/tex]
[tex] = \sqrt{ {9}^{2} + {12}^{2} } [/tex]
[tex] = \sqrt{81 + 144} [/tex]
[tex] = \sqrt{225} [/tex]
[tex] = 15cm[/tex]
Answer; OB = 15cm
3. m<AB = 90°
AB² = g² + g²
AB² = 81 + 81
AB² = 162
[tex]ab = \sqrt{162} [/tex]
Answer;
[tex] = 9\sqrt{2} [/tex]
hope it helps goodluck:>
PAMARK AS BRAINLIEST PO TNX <3
Answer:
1. m∠AOB= 75°
105°
285°
2. OB=15cm
3. AB is 9√2 cm
Step-by-step explanation:
1. arc AB= m∠AOB= 75°, the measure of the central angle is equal to the measure of its intercepted arc
arc AD= 180°- arc AB = 180°-75°= 105° , 180° because BD is a straight line and arc BAD is a semicircle
arc ACB = 360°- arc AB= 360°-75°=285°
2. a tangent is perpendicular to the circle at the point of tangency, so ΔBAO is a right triangle and we can use the Phytagorean Theorem here.
[tex](AB)^{2} + (AO)^{2} = (OB)^{2} \\\\(12cm)^{2} + (9cm)=(OB)^{2} \\144cm^{2} +81cm^{2} = (OB)^{2} \\225cm^{2} = (OB)^{2} \\\sqrt{(OB^{2}) } = \sqrt{225cm\\^{2} } \\OB = 15cm[/tex]
3. ΔBOA is an isosceles triangle since two sides are equal since they are both radii of Circle O, if arc AB is 90°, then ∠BOA is also 90°, therefore this is an isosceles right triangle (45-45-90 special right triangle), in a 45-45-90 right triangle, the hypotenuse is √2 times one of the leg, so if one leg measures 9 cm, then AB is 9√2 cm.
PA BRAINLIEST PO
SALAMΔT>, THΔNK YOU>, GRΔCIΔS, M∈RCI,