Sagot :
[tex]\Large\underline{\mathbb{SOLUTION:}}[/tex]
Factor out [tex] \large \tt \: x {}^{2} [/tex] from the expression
- [tex]\large \tt \: x {}^{2} \times (121x {}^{2} y {}^{6} - 25z {}^{12})[/tex]
Use the identify,
- [tex] \large \tt \: a {}^{2} - b {}^{2} = (a - b)(a + b)[/tex]
To factor the expression
- [tex] \large \tt \: a = 11xy {}^{3} [/tex]
- [tex]\large \tt \: b = 5z {}^{6} [/tex]
Answer:
[tex]\large \tt \: \red{x {}^{2} \times (11xy {}^{3} - 5z {}^{6}) \times(11xy {}^{3} + 5z {}^{6} ) }[/tex]
[tex] \\ [/tex]
#CarryOnLearning
[tex]\huge{ \green{ \underline{ \green{ \bold{Solution:}}}}}[/tex]
Factor out x² from the expression
- x² × (121x²y⁶ - 25z¹²)
Use the identify,
- a² - b² = (a - b)(a + b)
To factor the expression
- a = 11xy³
- b = 5z⁶
[tex] \: [/tex]
[tex]\huge{ \green{ \underline{ \green{ \bold{Answer:}}}}}[/tex]
- x² × (11xy³ - 5z⁶) × (11xy³ + 5z⁶)
[tex] \: [/tex]
[tex] \: [/tex]