[tex] \color{lime} \underline \mathbb{DIRECTIONS : }[/tex]
write each equation of a circle in the general form
[tex] \\ [/tex]
- [tex] \sf{ {(x - 5)}^{2} + {(y - 15)}^{2} = 4 }[/tex]
=============================
The general form of the circle is:
- [tex] \sf{ {x}^{2} + {y}^{2} + cx + dy + e = 0 }[/tex]
=============================
[tex] \color{green} \underline \mathbb{SOLUTION : }[/tex]
- [tex] \sf{ {(x - 5)}^{2} + {(y - 15)}^{2} = 4 }[/tex]
- [tex] \sf{ (x^2 - 10x+25) + (y^2 - 30y+225) = 4 }[/tex]
- [tex] \sf{ (x^2-10x+25) + (y^2-30y+225)-4 = 0 }[/tex]
- [tex] \sf{ x^2 + y^2 -10x - 30y+246 = 0 }[/tex]
[tex]\\[/tex]
[tex]\color{yellow}\underline\mathbb{ANSWER:}[/tex]
- The general form is [tex] \sf{ x^2 + y^2 -10x - 30y+246 = 0 }[/tex]
[tex]\\[/tex]
[tex]\color{aqua}\tiny\sf{Jindy Winter}[/tex]☺️