________________________________

Note: Please answer my question correctly, nonsense answer will be reported. ________________________________

Lesson: Distance Formula
________________________________​


Note Please Answer My Question Correctly Nonsense Answer Will Be Reported Lesson Distance Formula class=

Sagot :

Answer:

1) A. i and ii

Explanation: We all know that on finding the distance of two points, we needed the formula [tex]d = \sqrt{(x_{2} -x_{1} )^{2} + (y_{2} -y_{1})^{2} }[/tex].

2) A. 13. 04

Explanation:

[tex]d = \sqrt{(x_{2} -x_{1} )^{2} + (y_{2} -y_{1})^{2} }[/tex]

[tex]d = \sqrt{(7 -(-4) )^{2} + (15 -8)^{2} }[/tex]

[tex]d = \sqrt{11^{2} + 7^{2} }[/tex]

[tex]d = \sqrt{121 + 49 }[/tex]

[tex]d = \sqrt{170 }[/tex]

[tex]d = 13.038\\d \thickapprox 13.04[/tex]

3) B. 5

Explanation:

[tex]d = \sqrt{(x_{2} -x_{1} )^{2} + (y_{2} -y_{1})^{2} }[/tex]

[tex]25= \sqrt{(18 -3)^{2} + (-15 -y)^{2} }[/tex]

y = -35, 5

y = 5

4) C. (-5, 2)

Explanation:

[tex]13= \sqrt{((7-(-5))^2+(-3-2)^2} \\[/tex]

13 = 13 TRUE

5) C. [tex]\sqrt{61 }[/tex]

Explanation:

[tex]d = \sqrt{(-5 -0 )^{2} + (-6-0)^{2} }[/tex]

[tex]d = \sqrt{(-5 )^{2} + (-6)^{2} }[/tex]

[tex]d = \sqrt{25+ 36 }[/tex]

[tex]d = \sqrt{61 }[/tex]

6) B. 8

Explanation:

|7 - (-1) | = 8, and 8 is the distance of the coordinates.

7) A. 15

Using the distance formula, the distance between two points is 15 units.

8) C. [tex]\sqrt{45}[/tex]

Using the distance formula, the distance between two points is [tex]\sqrt{45}[/tex] or [tex]3\sqrt{5}[/tex].

9) C. [tex]2\sqrt{65}[/tex]

Using the distance formula, the distance between the two points is [tex]2\sqrt{65}[/tex].