Hello! can you answer this correctly if you know the answer and if it's ok to you to answer it ^-^

If your answer are ↓
• > Nonsense
• > Not helpful
• > Not complete
• > No explanation (if it's needed to the question)
• > Copy answer
• > Wrong answer

-: WILL BE REPORTED :-

[ Plsss answer this if you only know the answer if not so stop answering it ]​


Hello Can You Answer This Correctly If You Know The Answer And If Its Ok To You To Answer It If Your Answer Are Gt Nonsense Gt Not Helpful Gt Not Complete Gt No class=

Sagot :

[tex]\color{red}\underline { \huge{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

[tex]\underline{\mathbb{PROBLEM}:}[/tex]

  • Two iceskaters stand together. They "push off" and travel directly away from each other, the boy with a velocity of [tex]\tt{\green{+ 1.50 \: m/s}}[/tex]. If the boy weighs [tex]\tt{\green{735.0 \: N }}[/tex] and the girl, [tex]\tt{\green{490 . 0 \:N }}[/tex] , what is the girl's velocity after they push off? (Consider the ice to be frictionless.)

[tex]\color{red}\underline { \huge{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

[tex]\underline{\mathbb{SOLUTION}:}[/tex]

» Remember that ;

» [tex]\sf{{W = mg }}[/tex], thus, [tex]\tt{{ \sf \: m = w/g.(use \: g = 9.8 \: m/ {s}^{2}) }}[/tex].

[tex]\sf{\qquad \qquad \: mass \: \qquad \qquad \: velocity} \\ \sf \qquad boy \qquad \green{75.00 \: kg }\qquad \qquad \green{1.50 \: m/s }\\ \sf \: { \: \: girl\qquad \green{50.00 \: kg}\qquad\qquad\qquad\green{?}}[/tex]

» The ice where they stand on is considered to be frictionless, thus, no external force is present. The momentum of the boy-girl system is conserved. There is no change in the momentum of the system before and after the push off.

[tex] \sf{Total \: Initial \: Momentum=Total \: Final \: Momentum} \\ \sf \: 0 = P_{\text{boy \: +}} \sf \: P_{\text{girl \:}} \\ \sf \: P_{\text{boy \: = }}P_{\text{girl \:}} \\ \sf \: \: (mv) _{\text{boy \: = }} \sf \: \: (mv) _{\text{girl \:}} \\ \sf \: \: 112.5 \: kg \: m/s = 50.0 \: kg \: (v_{\text{girl\: }}) \\ \: \: \: \: \: \: \: \: \begin{gathered} \begin{array}{l} \bold \therefore \boxed{ \green{{ \sf \: 2.25 \: m/s \: = V_{\text{girl }}}}}\Longleftarrow\textsf{Answer} \end{array} \end{gathered}[/tex]

[tex]\therefore[/tex]The girl moves with a velocity of [tex]\tt{\green{2.25 \: m/s }}[/tex] opposite to the direction of the boy.

[tex]\color{red}\underline { \huge{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

If you have any question regarding to my answer, don't hesitate to ask me.

#CarryOnLearning

૮₍ ˃ ⤙ ˂ ₎ა