use distance formula to find the distance between points​

Use Distance Formula To Find The Distance Between Points class=

Sagot :

✒ MATHEMATICS

SOLUTION :

Formula for distance of two points:

  • [tex]{\boxed{{\sf{d = \sqrt{{( x_2 - x_1) {}^{2} + ( y_2 - y_1) {}^{2}} } }}}}[/tex]

#17. Distance between w(1 , 7) and x(-2 , -4) is:

  • [tex]d = \sqrt{( x_2 - x_1) {}^{2} + ( y_2 - y_1) {}^{2}} [/tex]
  • [tex]d = \sqrt{( - 2 - 1) {}^{2} + ( - 4 - 7) {}^{2} } [/tex]
  • [tex]d = \sqrt{9 + 121} [/tex]
  • [tex]d = \sqrt{130} [/tex]
  • [tex]d = {\boxed{\green{\sf{11.4 \: units }}}}[/tex]

#18. Distance between G(-6.25 , 5) and H(-3.75, 2) is:

  • [tex]d = \sqrt{( x_2 - x_1) {}^{2} + ( y_2 - y_1) {}^{2}} [/tex]
  • [tex]d=\sqrt{( - 3.75 - (6.25)) {}^{2} + (2 - 5) {}^{2} } [/tex]
  • [tex]d = \sqrt{6.25 + 9} [/tex]
  • [tex]d = \sqrt{15.25} [/tex]
  • [tex]d = {\boxed{\green{\sf{ 3.9 \: units}}}}[/tex]

#19. Distance between P( -9 1/4, -7 1/2) and Q(-4 , 5) is:

  • [tex]d = \sqrt{( x_2 - x_1) {}^{2} + ( y_2 - y_1) {}^{2}} [/tex]
  • [tex]d = \sqrt{( - 4 - ( - 9 \frac{1}{4})) {}^{2} + ( 5 - ( - 7 \frac{1}{2})) {}^{2} } [/tex]
  • [tex]d = \sqrt{27.5625 + 156.25} [/tex]
  • [tex]d = \sqrt{183.8125} [/tex]
  • [tex]d = {\boxed{\green{\sf{ 13.6 \: units}}}}[/tex]

ANSWER :

  • #17. 11.4 units
  • #18. 3.9 units
  • #19. 13.6 units

hope this helps

#CarryOnLearning

ANSWER :

  • 17.) 11.4 units
  • 18.) 3.9 units
  • 19.) 13.6 units

Step-by-step explanation:

:)