Sagot :
Answer:
A. [tex]\sf\large{ \sqrt{1575}}[/tex] cm
B. [tex]\sf\large{480 \sqrt{23}}[/tex] cm
[tex]{}[/tex]
Solution:
a) use Pythagorean theorem
lets r – balls radius, l – length of string,
a – length of dot line
[tex]\sf\large{r\:= \frac{d}{2} = \frac{10}{5}\:=\:5}[/tex] cm
l² = a² + r²
a² = l² - r² = 40² - 5² = 1600 - 25 = 1575
a = ± [tex]\sf{ \sqrt{1575}}[/tex]
a cant be negative, so a = [tex]\sf{ \sqrt{1575}}[/tex]
Answer: [tex]\sf{ \sqrt{1575}}[/tex] cm
[tex]{}[/tex]
b) Lets find length of one string
[tex]\sf\large{r\:= \frac{d}{2} = \frac{12}{2}\:=\:6}[/tex] cm
l² = r² + a² = 6² + 30² = 36 + 900 = 936
l = ± [tex]\sf{ \sqrt{936}}[/tex]
l cant be negative, so l = [tex]\sf{ \sqrt{936}}[/tex] cm
if he hangs 40 pairs, he hangs 40 × 2 = 80 balls
80 × [tex]\sf{ \sqrt{936}}[/tex] = 80[tex]\sf{ \sqrt{936}}[/tex] = 80[tex]\sf{ \sqrt{36 × 26}}[/tex] = 80 × 6[tex]\sf{ \sqrt{23}}[/tex]
= 480[tex]\sf{ \sqrt{23}}[/tex] cm
Answer: 480[tex]\sf{ \sqrt{23}}[/tex]cm
[tex]{}[/tex]
LetsStudy
✒️CIRCLES
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \Large a) \: \rm{10\sqrt6 \: cm} [/tex]
[tex] \qquad \Large b) \: \rm{\approx 1,\!968 \: cm} [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTIONS}:} [/tex]
Problem (a):
» Label the points:
- A = Center of the ball
- B and E = Point where the string is attached to the ball
- C = Point of tangency or the point of contact of the balls
- D = Point where the string is attached to the ceiling.
» Since the string used is 40cm, then each string used from a ball to the ceiling is 20cm.
- [tex] BD = 20 [/tex]
- [tex] ED = 20 [/tex]
» Draw two radii, from A to B, and from A to C. Since the diameter is 10icm, then each of them measures 5cm.
- [tex] AB = 5 [/tex]
- [tex] AC = 5 [/tex]
» Since AC is perpendicular to CD, then ∆ACD is a right triangle. Solve for CD using the Pythagorean Theorem.
- [tex] (CD)^2 + (AC)^2 = (AD)^2 [/tex]
- [tex] (CD)^2 + (AC)^2 = (AB + BD)^2 [/tex]
- [tex] (CD)^2 + (5)^2 = (5 + 20)^2 [/tex]
- [tex] (CD)^2 + (5)^2 = (25)^2 [/tex]
- [tex] (CD)^2 + 25 = 625 [/tex]
- [tex] (CD)^2 = 625 - 25 [/tex]
- [tex] (CD)^2 = 600 [/tex]
- [tex] \sqrt{(CD)^2} = \sqrt{600} [/tex]
- [tex] CD = 10\sqrt6 [/tex]
[tex] \therefore [/tex] The distance between the point of tangency of the two balls from the ceiling is 10√6 cm.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
Problem (b):
» Label the points as used in Problem (a).
» Draw two radii from A to B, and from A to C. Since the diameter is 12cm, then each of them measures 6cm.
- [tex] AB = 6 [/tex]
- [tex] AC = 6 [/tex]
» The distance of the point of tangency of each pair of balls is 30 cm from the ceiling?
- [tex] CD = 30 [/tex]
» Find the length of one string attached to one ball from the ceiling using the Pythagorean Theorem. Refer it as x.
- [tex] (CD)^2 + (AC)^2 = (AD)^2 [/tex]
- [tex] (CD)^2 + (AC)^2 = (AB + BD)^2 [/tex]
- [tex] (30)^2 + (6)^2 = (6 + x)^2 [/tex]
- [tex] 900 + 36 = 36 + 12x + x^2 [/tex]
- [tex] 900 = 12x + x^2 [/tex]
- [tex] x^2 + 12x - 900 = 0 [/tex]
» By solving the quadratic equation, we get the positive solution as:
- [tex] x = 6\sqrt{26} - 6 [/tex]
- [tex] BD = 6\sqrt{26} - 6 [/tex]
» Thus, the measure of string used to one ball is 6√26 - 6 cm. Therefore, each pair of balls will use a string of:
- [tex] \rm Pair = 2(6\sqrt{26} - 6) [/tex]
- [tex] \rm Pair = 12\sqrt{26} - 12 [/tex]
» And since there are 40 pairs to be used in the hall, then the total measure string to be used is:
- [tex] \rm 40 \: Pairs = 40(12\sqrt{26} - 12) [/tex]
- [tex] \rm 40 \: Pairs = 480\sqrt{26} - 480 [/tex]
» By getting the approximate value of √26.
- [tex] \rm 40 \: Pairs \approx 480(5.1)- 480 [/tex]
- [tex] \rm 40 \: Pairs \approx 2448 - 480 [/tex]
- [tex] \rm 40 \: Pairs \approx 1968 [/tex]
[tex] \therefore [/tex] The measure of string used for 40 pairs of balls is about 1968 cm.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ

