Sagot :
✒️POWER THEOREM
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{DIRECTIONS}:} [/tex]
- Find the unknown segment (x) in each of the following figure. Use the theorem of two intersecting chord and solve it.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \Large \:\: \rm{1) \; x = 2 \: units } [/tex]
[tex] \qquad \Large \:\: \rm{2) \; x = 4 \: units } [/tex]
[tex] \qquad \Large \:\: \rm{3) \; x = 12 \: units } [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTIONS}:} [/tex]
No. 1:
- [tex] (CB)(BE) = (AB)(BD) [/tex]
- [tex] (9)(x) = (3)(6) [/tex]
- [tex] 9x = 18 [/tex]
- [tex] \frac{\,9x\,}{9} = \frac{\,18\,}{9} \\ [/tex]
- [tex] x = 2 [/tex]
[tex] \therefore [/tex] The length of segment x is 2 units
[tex] \: [/tex]
No. 2:
- [tex] (NM)(MK) = (OM)(M L) [/tex]
- [tex] (9)(x) = (12)(3) [/tex]
- [tex] 9x = 36 [/tex]
- [tex] \frac{\,9x\,}{9} = \frac{\,36\,}{9} \\ [/tex]
- [tex] x = 4 [/tex]
[tex] \therefore [/tex] The length of segment x is 4 units
[tex] \: [/tex]
No. 3:
- [tex] (WV)(VY) = (UV)(VZ) [/tex]
- [tex] (4)(x) = (6)(8) [/tex]
- [tex] 4x = 48 [/tex]
- [tex] \frac{\,4x\,}{4} = \frac{\,48\,}{4} \\ [/tex]
- [tex] x = 12 [/tex]
[tex] \therefore [/tex] The length of segment x is 12 units
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ