[tex] \frac{6}{x} + 2 = 4x[/tex]

pahelp naman po ​


Sagot :

The value of [tex]x[/tex] is -1 and 3/2

I assume we are asked to solve for [tex] x[/tex] in the equation:

[tex]\displaystyle \frac{6}{x}+2=4x[/tex]

To make the equation simpler, multiply both sides by [tex]x[/tex]

[tex]\displaystyle x\bigg(\frac{6}{x}+2\bigg)=x(4x)[/tex]

[tex]6+2x=4x^2[/tex]

Move the terms to the right side to get the quadratic equation:

[tex]4x^2-2x-6=0 [/tex]

In order to solve for [tex]x[/tex] in the quadratic equation, we use the quadratic formula:

[tex]\boxed{\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}} [/tex]

Set [tex] a=4[/tex], [tex] b =-2[/tex] and [tex]c=-6[/tex]

[tex]\displaystyle x=\frac{-(-2)\pm\sqrt{(-2)^2-4(4)(-6)}}{2(4)}[/tex]

[tex]\displaystyle x=\frac{2\pm\sqrt{4+96}}{8}[/tex]

[tex]\displaystyle x=\frac{2\pm\sqrt{100}}{8}[/tex]

[tex]\displaystyle x=\frac{2\pm10}{8}[/tex]

Solving,

[tex]\begin{array}{cccc} x=\dfrac{2+10}{8}& & &x=\dfrac{2-10}{8} \\ \\ x=\dfrac{12}{8} & & & x=\dfrac{-8}{8} \\ \\ \boxed{x=\dfrac{3}{2}}& & & \boxed{x=-1 }\end{array} [/tex]

Therefore, the roots are -1 and 3/2.

Hope it helps.