[tex] \boxed{\underline{\large{\mathbb{DIRECTION:}}}}[/tex]
[tex]\gray{⊱┈────────────────────┈⊰}[/tex]
[tex] \boxed{\underline{\large{\mathbb{ANSWERS:}}}}[/tex]
1) (a + b)²
[tex](a+ b)^{2} = a^{2} + 2ab + b^{2} \\ = a^{2} + 2ab + 2b[/tex]
2) (a - b)
[tex] = \: a - b[/tex]
( Could not simplify further )
3) (a + b)(a - b)
[tex] = \: a^{2} - b^{2} [/tex]
4) (a + b)³
[tex] = a^{3} + 3a^{2} b + 3ab^{2} + b^{3} [/tex]
5) (a - b)³
[tex] = a^{3} - 3a^{2} b \: + 3ab^{2} - b^{3} [/tex]
6) (a + b + c)²
( Here are the solution for no.6)
Apply exponent rule: [tex]a^{b \: + \: c} = a^{b} a^{c} [/tex]
[tex](a \: + \: b \: + \: c) \: (a \: + \: b \: + \: c)[/tex]
Distributive Parentheses
[tex] aa \: + \: ab \: + ac \: + \: ba \: + \: bb \: + bc \: + ca \: + \: cb \: + \: cc[/tex]
So the answer is:
[tex]a^{2} + 2ab \: + 2ac \: + b^{2} + 2bc \: + c^{2} [/tex]
❦ⒹⒾⒺⓅ⑨⑨❦