Sagot :
CIRCLES
[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
#2
If mPR = 45 and mQS = 49, what is m∠PIR? m∠RTS?
[tex]\:[/tex]
[tex] \large{\sf \underline{Givens:}}[/tex]
- mPR = 45
- mQS = 49
[tex]\:[/tex]
[tex]\large{\sf \underline{Find:}}[/tex]
[tex]\: \: \: \: \: \: \: \: \: \: \: [/tex]m∠PIR and m∠RTS
[tex]\:[/tex]
[tex] \large{\sf \underline{Solution:}}[/tex]
[tex]\:[/tex]
» First, find m∠PTR
[tex]\:[/tex]
- m∠PTR = ½ (mPR + mQS)
- m∠PTR = ½ (45 + 49)
- m∠PTR = ½ (94)
- m∠PTR = 47
[tex]\:[/tex]
» Find m∠RTS
- m∠RTS = 180 - (m∠PTR)
- m∠RTS = 180 - 47
- m∠RTS = 133
[tex]\:[/tex]
∴ m∠PTR is 47° and m∠RTS is 133°
[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
#3
[tex]\:[/tex]
If mMKL = 220 and mML = 140, what is m∠MQL?
[tex]\:[/tex]
[tex] \large{\sf \underline{Givens:}}[/tex]
[tex]\:[/tex]
- mMKL = 220
- mML = 140
[tex]\:[/tex]
[tex]\large{\sf \underline{Find:}}[/tex]
[tex]\:[/tex]
[tex]\: \: \: \: \: \: \: \: \: \: \: [/tex] m∠MQL
[tex]\:[/tex]
[tex] \large{\sf \underline{Solution:}}[/tex]
[tex]\:[/tex]
- m∠MQL = ½(ML - MKL)
- m∠MQL = ½(220 - 140)
- m∠MQL = ½(80)
- m∠MQL = 40
[tex]\:[/tex]
∴ m∠MQL is 40°
[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
#4
[tex]\:[/tex]
Suppose mCG = 6x + 5, mAR = 4x + 15 and m∠AEC = 120.
Find: a)x [tex]\: \: \: \: \: \: \: \: \: \: \: [/tex] ; b) mCG [tex]\: \: \: \: \: \: \: \: \: \: \: [/tex] ; c) mAR
[tex]\:[/tex]
[tex] \large{\sf \underline{Givens:}}[/tex]
- mCG = 6x + 5
- mAR = 4x + 15
- m∠AEC = 120
[tex]\:[/tex]
[tex]\large{\sf \underline{Find:}}[/tex]
- a) x
- b) mCG
- c) mAR
[tex]\:[/tex]
[tex] \large{\sf \underline{Solution:}}[/tex]
[tex]\:[/tex]
» Find (x)
[tex]\:[/tex]
- mCG = mAR
- 6x + 5 = 4x + 5
- 6x - 4x = 15 - 5
- 2x = 10
- [tex] \frac{2x}{2} = \frac{10}{2} [/tex]
- x = 5
[tex]\:[/tex]
» Find mCG
- mCG
- 6x + 5
Substitute x = 5
- 6(5) + 5
- 30 + 5 = 35
- mCG = 35
[tex]\:[/tex]
» Find mAR
- mAR
- 4x + 15
Substitute x = 5
- 4(5) + 15
- 20 + 15 = 35
- mAR = 35
[tex]\:[/tex]
∴ All the highlighted part/word(s) are the answers.
[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
#5
[tex]\:[/tex]
OK is tangent to ⊚ R at C. Suppose KC = OC, OK = 8 and RC = 3. Find; OR, RS, and KS
[tex]\:[/tex]
[tex]\large{\sf \underline{Find:}}[/tex]
- OR
- RS
- KS
[tex]\:[/tex]
[tex] \large{\sf \underline{Solution:}}[/tex]
[tex]\:[/tex]
» Since OK = 8 and KC = OC, substitute it to the equation and find out KC and OC.
- OK = KC + OC
- 8 = KC + OC
- 8 = 2(KC + OC)
- 4 = KC ; 4 = OC
[tex]\:[/tex]
∆ Find OR using Pythagorean Theorem when RC = 3 and KC = 4.
- RC² + KC² = OR²
- 3² + 4² = OR²
- 9 + 16 = OR²
- 25 = OR²
- [tex] \sqrt{25} = OR[/tex]
[tex]\:[/tex]
∴ OR measures 5 units
[tex]\:[/tex]
∆ Find RS
[tex]\:[/tex]
- Since R is the center of the circle and C is the point on the circle, that means RC is the radius. RS = RC being the radius of the circle. Since RC = 3, RS is also 3.
[tex]\:[/tex]
∴ RS measures 3 units
[tex]\:[/tex]
∆ Find KS
[tex]\:[/tex]
» Using segment addition postulate, we get RS + KS = KR. We know that RS = 3 and KR is 5. Substitute it to get KS.
- RS + KS = KR
- 3 + KS = 5
- KS = 5 - 3
- KS = 2
[tex]\:[/tex]
∴ KS measures 2 units
[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
All highlighted number(s)/word(s)/parts are the answers.
[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
#CarryOnLearning
ヾ(〃^-^)ノ