1. m + 1
2. m² + m
3. 2× + ײ
4. 6 + 5a - 1
5. ×3 - 3× + 4​


Sagot :

Answer:

1.x

2.x

3.x

4.m

5.c

Step-by-step explanation:

yan lang kaya:)

Answer:

Factor the expressions that are not already factored.

5+5a=5\left(a+1\right)5+5a=5(a+1)

Step 2

Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.

-5mx\left(a+1\right)\left(m+1\right)\left(x+2\right)\left(3x-x_{3}-4\right)−5mx(a+1)(m+1)(x+2)(3x−x

3

−4)

Step 3

Expand the expression.

-15am^{2}x^{3}-15amx^{3}-15m^{2}x^{3}-15mx^{3}-10am^{2}x^{2}-10amx^{2}-10m^{2}x^{2}-10mx^{2}+10axx_{3}m^{2}+10amxx_{3}+10xx_{3}m^{2}+10mxx_{3}+40axm^{2}+40amx+40xm^{2}+40mx+5ax_{3}m^{2}x^{2}+5amx_{3}x^{2}+5x_{3}m^{2}x^{2}+5mx_{3}x^{2}−15am

2

x

3

−15amx

3

−15m

2

x

3

−15mx

3

−10am

2

x

2

−10amx

2

−10m

2

x

2

−10mx

2

+10axx

3

m

2

+10amxx

3

+10xx

3

m

2

+10mxx

3

+40axm

2

+40amx+40xm

2

+40mx+5ax

3

m

2

x

2

+5amx

3

x

2

+5x

3

m

2

x

2

+5mx

3

x

2

Step-by-step explanation:

Solution

-5mx\left(a+1\right)\left(m+1\right)\left(x+2\right)\left(3x-x_{3}-4\right)−5mx(a+1)(m+1)(x+2)(3x−x

3

−4)