[tex]\large \underline{\mathbb{PROBLEM:}}[/tex]
Rod is saving Php 2,000.00 in a bank at the end of each month which gives an interest of 1% compounded monthly. How much is the savings of Rod after 2 years?
[tex]\: \: \:[/tex]
[tex]\large \underline{\mathbb{SOLUTION:}}[/tex]
[tex] \bold{FORMULA}[/tex]
[tex] \sf{A = P(1+(r/n)^nt}[/tex]
[tex] \sf{A = Amount}[/tex]
[tex] \sf{P = Principal}[/tex]
[tex] \sf{r = Interest \: Rate}[/tex]
[tex] \sf{n = Number \: of \: Compounds \: per \:year}[/tex]
[tex] \sf{t = Time}[/tex]
[tex] \bold{GIVEN}[/tex]
[tex] \sf{A = Unknown}[/tex]
[tex] \sf{P = 2,000}[/tex]
[tex] \sf{r = 0.1}[/tex]
[tex] \sf{n = 12}[/tex]
[tex] \sf{t = 2}[/tex]
[tex] \bold{SOLVE}[/tex]
[tex] \sf{A = P(1+(r/n)^nt}[/tex]
[tex] \sf{A = 2,000(1+0.1/12)^2}[/tex]
[tex] \sf{A = 2,000(1+0.0083)^2}[/tex]
[tex] \sf{A = 2,000(1.0083)^2}[/tex]
[tex] \sf{A = 2,000(2.0166)}[/tex]
[tex] \orange{{\sf{A = 2,002}}}[/tex]
[tex]\: \: \:[/tex]
[tex]\large \underline{\mathbb{ANSWER:}}[/tex]
Therefore Rod saving after 2 years is 2,002