Sagot :
✏️RECTANGLE
===============================
Problem: The area of a rectangle is at most 360 square inches. The length is 6 more than twice the width. Find the length and width of the Rectangle.
A. How would you represent the dimensions of the rectangle?
- Let l and w as the length and width of the rectangle respectively. And the formula of the area of a rectangle is Area = l • w. And substitute all the values.
B. What mathematical sentence would represent the given Situation?
I set into two equations to solve for length and the width.
- [tex] \begin{cases} l = 6 + 2w \\ 360 =l⋅w \end{cases}[/tex]
C. What are the possible dimensions of the Rectangle? show your solution.
Solution:
- [tex] \begin{cases} l = 6 + 2w& \green{(eq. \: 1) }\\ 360 =l⋅w& \green{(eq. \: 2)}\end{cases}[/tex]
- Substitute l from the first equation in terms of w.
- [tex] \begin{cases} l = 6 + 2w \\ 360 =(6 + 2w)⋅w \end{cases}[/tex]
- [tex] \begin{cases} l = 6 + 2w \\ 360 =2 {w}^{2} + 6w \end{cases}[/tex]
- [tex] \begin{cases} l = 6 + 2w \\ 2 {w}^{2} + 6w - 360 = 0 \end{cases}[/tex]
- Solve the quadratic equation from the second equation by using the quadratic formula. Make sure that gives the positive solution.
- [tex] \begin{gathered}w = \frac{ \text -6 + \sqrt{ {( \text6)}^{2} - 4(2)(\text-360)} }{2( \text - 2)} \end{gathered}[/tex]
- [tex] \begin{gathered}w = \frac{ \text - 6 + \sqrt{36 - 4( \text -720)} }{4} \end{gathered}[/tex]
- [tex] \begin{gathered}w = \frac{ \text - 6 + \sqrt{36 - 4( \text -720)} }{4} \end{gathered}[/tex]
- [tex]\begin{gathered}w = \frac{ \text - 6 + \sqrt{36 - ( \text -2880)} }{4} \end{gathered}[/tex]
- [tex]\begin{gathered}w = \frac{ \text - 6 + \sqrt{36 + 2880} }{4} \end{gathered}[/tex]
- [tex]\begin{gathered}w = \frac{ \text - 6 + \sqrt{2916} }{4} \end{gathered}[/tex]
- [tex]\begin{gathered}w = \frac{ \text - 6 + 54 }{4} \end{gathered}[/tex]
- [tex]\begin{gathered}w = \frac{48}{4} \end{gathered}[/tex]
- [tex]w = 12[/tex]
- Substitute w to the first equation to find the length.
- [tex]\begin{cases} l = 6 + 2(12) \\ w = 12\end{cases}[/tex]
- [tex]\begin{cases} l = 6 + 24 \\ w = 12\end{cases}[/tex]
- [tex]\begin{cases} l = 30 \\ w = 12\end{cases}[/tex]
- The dimensions of the rectangle are:
- [tex]\boxed{ \sf{ \: length = \green{30 \:inches }\: }}[/tex]
- [tex]\boxed{ \sf{ \: width = \green{12 \:inches }\: }}[/tex]
===============================
#CarryOnLearning
#LearnWithBrainly