Sagot :
Answer:
1,683
Step-by-step explanation:
3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30 + 33 + 36 + 39 + 42 + 45 + 48 + 51 + 54 + 57 + 60 + 63 + 66 + 69 + 72 + 75 + 78 + 81 + 84 + 87 + 90 + 93 + 96 + 99 = 1,683
Answer:
1683
first multiple (a1) of 3 between 1 and 100 is 3, last multiple (an) is 99, using that, find n first (no of terms or n) with d = 3
an=a1+(n-1)d
99=3+(n-1)3
96=3(n-1)
n-1=32
n=33
to find the sum, use the formula
Sn=n[(a1+an)/2]
Sn=33[(3+99)/2]
Sn=33(102/2)
Sn=33(51)
Sn=1683