do you come to conclusions long before the problem has been laid out before you?​

Sagot :

Explanation:

✏️FRACTIONS:

==============================

A. Express the following improper fractions into mixed numbers.

How to convert: "Divide the numerator by the denominator, the quotient will be the whole number, the remainder will be the new numerator, and the denominator stays the same."

#1: \large \frac{15}{8} = \tt\green{1 \frac{7}{8}}

8

15

=1

8

7

#2: \large \frac{29}{9} = \tt\green{3 \frac{2}{9}}

9

29

=3

9

2

#3: \large \frac{27}{15} = 1 \frac{12}{15} = \tt\green{1 \frac{4}{5}}

15

27

=1

15

12

=1

5

4

B. Express the following mixed numbers into improper fractions.

How to convert: "Multiply the denominator to the whole number then add the product to the numerator."

#1: \large 5 \frac{3}{7} = \frac{35 \, + \, 3}{7} = \tt\green{ \frac{38}{7}}5

7

3

=

7

35+3

=

7

38

#2: \large 7 \frac{8}{9} = \frac{63 \, + \, 8}{9} = \tt\green{ \frac{71}{9}}7

9

8

=

9

63+8

=

9

71

#3: \large 6 \frac{5}{11} = \frac{66 \, + \, 5}{11} = \tt\green{ \frac{71}{11}}6

11

5

=

11

66+5

=

11

71

C. Multiply the following fractions and mixed numbers.

#1: \large \frac{4}{10} \times \frac{1}{2} = \frac{4}{20} = \tt\green{ \frac{1}{5}}

10

4

×

2

1

=

20

4

=

5

1

#2: \large \frac{8}{16} \times 8 = \frac{1}{2} \times 8 = \frac{8}{2} = \tt\green{4}

16

8

×8=

2

1

×8=

2

8

=4

#3: \large 8 \times 6 \frac{2}{7} = 8 \times \frac{44}{7} = \frac{352}{7} = \tt\green{50 \frac{2}{7}}8×6

7

2

=8×

7

44

=

7

352

=50

7

2

#4: \large 4 \frac{3}{2} \times \frac{1}{4} = \frac{11}{2} \times \frac{1}{4} = \frac{11}{8} = \tt\green{ 1\frac{3}{8}}4

2

3

×

4

1

=

2

11

×

4

1

=

8

11

=1

8

3

#5: \large 2 \frac{2}{5} \times 3 \frac{1}{8} = \frac{12}{5} \times \frac{25}{8} = \frac{3}{1} \times \frac{5}{2} = \frac{15}{2} = \tt\green{ 7 \frac{1}{2}}2

5

2

×3

8

1

=

5

12

×

8

25

=

1

3

×

2

5

=

2

15

=7

2

1

==============================

#CarryOnLearning

(ノ^_^)ノ