[tex] \large \bold{\blue{DIRECTIONS:}} [/tex] Determine the value of x that will make the rational expression undefined.
» To make the rational expression undefined, make sure that the denominator is equal to zero since you can't divide any number into zero.
#1: [tex] \frac{2}{x + 7} \\ [/tex]
[tex] \large \therefore \underline{\boxed{\tt \purple{x = -7}}} [/tex]
[tex] \: [/tex]
#2: [tex] \frac{2}{4x - 3} \\ [/tex]
[tex] \large \therefore \underline{\boxed{\tt \purple{x = \frac{3}{4}}}} [/tex]
[tex] \: [/tex]
#3: [tex] \frac{4}{x} \\ [/tex]
[tex] \large \therefore \underline{\boxed{\tt \purple{x = 0}}} [/tex]
[tex] \: [/tex]
#4: [tex] \frac{x+1}{x+5} \\ [/tex]
[tex] \large \therefore \underline{\boxed{\tt \purple{x = -5}}} [/tex]
[tex] \: [/tex]
#5: [tex] \frac{6 - x^2}{x^3} \\ [/tex]
[tex] \large \therefore \underline{\boxed{\tt \purple{x = 0}}} [/tex]
#CarryOnLearning
(ノ^_^)ノ