[tex]\tt{\huge{\blue{Explanation:}}}[/tex]
The force acting on an object is given by
[tex]\boxed{F = ma}[/tex]
where:
F = force
m = mass
a = acceleration
[tex]\tt{\huge{\red{Solution:}}}[/tex]
[tex]v_{f}^{2} - v_{i}^{2} = 2aS[/tex]
[tex]\dfrac{v_{f}^{2} - v_{i}^{2}}{2S} = \dfrac{2aS}{2S}[/tex]
[tex]a = \dfrac{v_{f}^{2} - v_{i}^{2}}{2S}[/tex]
[tex]a = \dfrac{0^{2} - (\text{15 m/s})^{2}}{2(\text{60m})}[/tex]
a = -1.875 m/s²
F = ma
F = (800 kg)(-1.875 m/s²)
[tex]\boxed{F = -\text{1,500 N}}[/tex]
Therefore, the force required to stop the car is 1,500 N.
Note: The negative sign of the acceleration and the force indicates that the object is decelerating, meaning, the object is slowing down.
[tex]\\[/tex]
#CarryOnLearning